Đóng góp cho toán học và vật lý Emmy_Noether

Điều đầu tiên và lớn nhất mà các nhà toán học nhớ về Noether đó là những công trình trong lĩnh vực đại số trừu tượngtô pô học. Các nhà vật lý biết ơn bà với định lý nổi tiếng bởi những hệ quả rộng lớn của nó trong vật lý lý thuyếthệ thống động lực. Bà chứng tỏ một xu hướng sắc bén cho tư duy trừu tượng cho phép bà tiếp cận các vấn đề toán học theo những cách mới và cơ bản.[86][23] Người bạn và đồng nghiệp Hermann Weyl miêu tả đóng góp của bà theo ba giai đoạn:

Công trình khoa học của Emmy Noether chia thành ba kỷ nguyên rõ ràng:

(1) giai đoạn phụ thuộc tương đối, 1907–1919;
(2) khảo sát các nhóm xung quanh lý thuyết tổng quát về iđêan, 1920–1926;

(3) nghiên cứu đại số không giao hoán, biểu diễn chúng bằng các phép biến đổi tuyến tính, và những ứng dụng vào nghiên cứu các trường số giao hoán và số học.

— Weyl 1935

Trong kỷ nguyên đầu tiên (1907–19), Noether tập trung chủ yếu vào các bất biến đại số và bất biến vi phân, bắt đầu từ luận án của bà dưới sự hướng dẫn của Paul Gordan. Khi chân trời toán học của bà rộng mở, các công trình trở lên tổng quát hơn và trừu tượng hơn, như bà quen thuộc với các công trìn của David Hilbert, hay cộng tác với người kế nhiệm Gordan, giáo sư Ernst Sigismund Fischer. Sau khi chuyển đến Göttingen năm 1915, bà đã có đóng góp nền tảng vào lĩnh vực vật lý với hai định lý Noether.

Kỷ nguyên thứ hai (1920–26), Noether dành thời gian phát triển lý thuyết vành.[87]

Trong kỷ nguyên thứ ba (1927–35), Noether tập trung cho đại số không giao hoán, các phép biến đổi tuyến tính và trường số giao hoán.[88]

Bối cảnh lịch sử

Trong giai đoạn từ 1832 cho đến khi Noether qua đời năm 1935, lĩnh vực toán hoc—đặc biệt là đại số—trải qua một cuộc cách mạng sâu sắc, mà sự vang dội của nó vẫn còn truyền tới ngày nay. Những nhà toán học ở thế kỷ trước nghiên cứu dựa trên các phương pháp thực hành để giải quyết những loại phương trình cụ thể, ví dụ như phương trình bậc ba, bậc bốn, và phương trình bậc năm, cũng như bài toán liên quan đến dựng các đa giác đều sử dụng thước kẻ và compa. Mở đầu với chứng minh của Carl Friedrich Gauss năm 1832 rằng số nguyên tố như 5 có thể phân tích thành các số nguyên Gauss,[89] Évariste Galois đưa ra nhóm hoán vị vào năm 1832 (mặc dù, bởi vì ông qua đời sớm, các bài viết của ông được Liouville công bố vào năm 1846), khám phá của William Rowan Hamilton về quaternion năm 1843, và định nghĩa hiện đại hơn của Arthur Cayley cho nhóm vào năm 1854, nghiên cứu chuyển sang xác định các tính chất của những hệ trừu tượng hơn xác định bởi những quy tắc phổ quát hơn. Đóng góp quan trọng nhất của Noether cho toán học đó là phát triển một lĩnh vực mới, đại số trừu tượng.[90]

Đại số trừu tượng và begriffliche Mathematik (toán học khái niệm)

Hai đối tượng quan trọng nhất trong đại số trừu tượng là nhóm và vành.

Một nhóm chứa tập hợp các phần tử và một phép toán kết hợp hai phần tử của tập hợp thu được phần tử thứ ba cũng thuộc tập đó. Phép toán này phải thỏa mãn một số điều kiện nhất định để xác định lên một nhóm: nó phải thỏa mãn tính đóng (khi kết hợp hai phần tử bất kỳ của tập hợp thì phần tử thu được cũng phải thuộc tập hợp đó), phép toán phải đảm bảo tính kết hợp, phải có phần tử đơn vị-hay còn gọi phần tử đồng nhất (phần tử mà khi kết hợp với nó sử dụng phép toán nhóm thu được chính phần tử đầu tiên, như cộng với số 0 hoặc nhân với số 1), và mỗi phần tử của nhóm đều phải có phần tử nghịch đảo tương ứng.

Tương tự như vậy cho một vành, đó là tập hợp các phần tử nhưng được trang bị hai phép toán. Phép toán thứ nhất khiến tập đó là một nhóm, còn phép toán thứ hai đảm bảo tính chất kết hợp và phân phối đối với phép toán thứ nhất. Vành có thể là giao hoán hoặc không giao hoán; điều này có nghĩa là kết quả áp dụng phép toán đối với phần tử thứ nhất và phần tử thứ hai là giống với kết quả khi áp dụng phép toán đối với phần tử thứ hai và phần tử thứ nhất—thứ tự của các phần tử không quan trọng. Nếu mỗi phần tử khác 0 có một phần tử nghịch đảo đối với phép nhân (phần tử x thỏa mãn ax = xa = 1), thì vành được gọi là vành chia (division ring). Một trường được định nghĩa là vành chia giao hoán.

Nhóm thường được nghiên cứu thông qua lý thuyết biểu diễn nhóm. Trong dạng tổng quát nhất, lý thuyết chứa một nhóm được chọn, một tập hợp, và một tác dụng của nhóm lên tập hợp, tức là một phép toán kết hợp một phần tử của nhóm với một phần tử của tập hợp và kết quả thu được một phần tử của tập hợp. Trong nhiều trường hợp, tập hợp này là không gian vectơ, và nhóm biểu diễn cho các đối xứng của không gian vectơ. Ví dụ nhóm biểu diễn phép quay trong không gian. Đây là một loại đối xứng của không gian bởi vì không gian tự nó không thay đổi khi thực hiện phép quay mặc dù vị trí của các vật thể trong nó thay đổi. Noether sử dụng những khái niệm này nhằm nghiên cứu đối xứng trong công trình của bà về những bất biến trong vật lý học.

Một công cụ mạnh để nghiên cứu vành là thông qua các môđun. Môđun chứa một vành được lựa chọn, một tập hợp khác-thường là khác với tập chứa vành và gọi là tập chứa môđun, một phép toán trên cặp các phần tử của tập chứa môđun, và một phép toán tác dụng lên một phần tử thuộc vành và một phần tử thuộc môđun và trả lại một phần tử thuộc môđun. Tập chứa mô đun và phép toán đối với nó phải tạo thành một nhóm. Một mô đun là phiên bản vành lý thuyết của phép biểu diễn nhóm: khi bỏ phép toán thứ hai của vành và phép toán trên cặp phần tử của mô đun xác định lên phép biểu diễn nhóm. Tiện ích thực của mô đun là loại các mô đun tồn tại và tương tác của chúng cho thấy cấu trúc của vành theo cách mà không thể thấy rõ ràng khi chỉ nhận xét từ chính vành. Một trường hợp quan trọng đặc biệt là đại số trên một trường. (từ đại số có nghĩa cho cả vật thể trong toán học cũng như vật thể nghiên cứu trong chủ đề của đại số.) Một đại số chứa hai vành được lựa chọn và một phép toán tác động lên mỗi phần tử thuộc từng vành và thu được phần tử thuộc vành thứ hai. Phép toán này khiến cho vành thứ hai trở thành mô đun đối với vành thứ nhất. Thông thường vành thứ nhất là một trường.

Các từ như "phần tử" và "phép toán kết hợp" là rất tổng quát, và có thể áp dụng cho nhiều tình huống trong thế giới thực và trừu tượng. Bất kỳ tập hợp nào mà tuân theo các quy tắc cho một (hoặc hai) phép toán sẽ là, bằng định nghĩa, một nhóm (hoặc vành), và tuân theo mọi định lý về nhóm (hoặc vành). Các số nguyên với phép toán cộng và nhân là những ví dụ như thế. Ví dụ, các phần tử có thể là các chữ cái trong dữ liệu máy tính, nơi phép toán kết hợp thứ nhất là phép loại trừ (phép tuyển) và phép toán thứ hai là phép hội lôgic. Các định lý của đại số trừu tượng là rất mạnh và có tính tổng quát. Tưởng tượng ra rằng chỉ có thể rút ra kết luận về vật thể định nghĩa chỉ với vài tính chất, nhưng chính xác như but precisely therein lay Noether's gift: để khám phá ra nhiều nhất mà có thể rút ra từ một tập hợp các tính chất cho trước, hoặc ngược lại, để định ra tập hợp nhỏ nhất, những tính chất cơ bản đáp ứng cho một quan sát đặc biệt. Không như hầu hết các nhà toán học, bà không thực hiện sự trừu tượng bằng cách tổng quát hóa từ những ví dụ cụ thể; hơn hết bà làm việc trực tiếp với những khái niệm trừu tượng. Như van der Waerden nhớ lại trong điếu văn của bà,[91]

Điều lớn nhất mà Emmy Noether đi theo trong toàn sự nghiệp của bà có thể miêu tả như sau: "Bất kỳ mối quan hệ giữa những số, hàm, và các phép toán trở lên mạch lạc, áp dụng được cho trường hợp tổng quát, và sự khai thác đầy đủ chỉ sau khi chúng đã bị cô lập khỏi những vật thể đặc biệt và được thiết lập như là một khái niệm đúng đắn phổ quát.

Đây chính là begriffliche Mathematik (toán học khái niệm thuần túy) mà thường thấy ở Noether. Kiểu phong cách này sau đó được những nhà toán học khác tiếp nhận, đặc biệt là trong lĩnh vực mới nổi là đại số trừu tượng.

Số nguyên như một ví dụ của vành

Các số nguyên tạo thành một vành giao hoán mà các phần tử là các số nguyên, và các phép toán là phép cộng và phép nhân. Bất kỳ cặp số nguyên nào có thể cộng hoặc nhân với nhau với kết quả luôn luôn là một số nguyên khác, và phép toán thứ nhất, phép cộng, có tính chất giao hoán tức là, đối với bất kỳ phần tử a và b thuộc vành, a + b = b + a. Phép toán thứ hai, phép nhân, cũng có tính chất giao hoán, nhưng điều này không cần phải thỏa mãn đối với các vành khác, có nghĩa là a kết hợp với b có thể khác khi b kết hợp với a. Ví dụ về các vành không giao hoán bao gồm ma trậnquaternion. Các số nguyên không tạo thành một vành chia, bởi vì phép toán thứ hai không luôn luôn khả nghịch; ví dụ không tồn tại số nguyên a sao cho 3 × a = 1.

Các số nguyên có thêm những tính chất khác mà có thể không thể tổng quát hóa cho mọi vành được. Một ví dụ quan trọng là định lý cơ bản của số học, nói rằng mỗi số nguyên dương có thể phân tích duy nhất thành tích các số nguyên tố. Sự phân tích duy nhất thành các nhân tử không phải lúc nào cũng đúng cho các vành khác, nhưng Noether tìm ra một định lý phân tích duy nhất, mà bây giờ gọi là định lý Lasker–Noether, đối với các iđêan của nhiều vành. Nhiều công trình của Noether đặt ra cách xác định tính chất nào thỏa mãn đối với mọi vành, theo cách tương tự đối với định lý cho các số nguyên, và xác định lên tập tối thiểu các giả sử cần thiết để thu được những tính chất nhất định của vành.

Kỷ nguyên đầu tiên (1908–19)

Lý thuyết bất biến đại số

Bảng 2 từ luận án của Noether[92] về lý thuyết bất biến. Bảng này liệt kê 202 trong số 331 bất biến của dạng trùng phương bậc ba. Những dạng này được phân loại dựa theo hai biến x và u. Hướng theo phương ngang của bảng liệt kê các bất biến theo chiều tăng của x, trong khi hướng theo phương dọc liệt kê chúng theo chiều tăng của u.

Nhiều công trình của Noether trong kỷ nguyên thứ nhất của sự nghiệp gắn liền với lý thuyết bất biến, đặc biệt là lý thuyết bất biến đại số. Lý thuyết bất biến xem xét đến các biểu thức mà không thay đổi (bất biến) dưới một nhóm các phép biến đổi. Như ví dụ thường gặp, nếu một thước đặc bị quay đi, các tọa độ (x, y, z) của hai điểm đầu và cuối nó thay đổi, nhưng độ dài L của thước cho bởi công thức L2 = Δx2 + Δy2 + Δz2 vẫn là như nhau. Lý thuyết bất biến là một lĩnh vực nghiên cứu sôi động vào cuối thế kỷ 19, một phần nhờ chương trình Erlangen do Felix Klein đề xuất, theo đó các loại hình học khác nhau có thể được đặc trưng bởi những bất biến của chúng dưới các phép biến đổi, ví như tỷ lệ chéo trong hình học xạ ảnh.Ví dụ điển hình cho bất biến đó là biệt thức B2 − 4AC của phương trình bậc hai Ax2 + Bxy + Cy2. Nó được gọi là bất biến bởi vì nó không thay đổi sau khi áp dụng phép thay thế x→ax + by, y→cx + dy với định thức ad − bc = 1. Những thay thế này tạo thành nhóm tuyến tính đặc biệt SL2. (Không có bất biến đối với nhóm tuyến tính tổng quát của mọi phép biến đổi khả nghịch bởi vì các phép biến đổi này có thể trở thành phép nhân bởi một hệ số tỷ lệ. Để khắc phục điểm này, lý thuyết bất biến cổ điển cũng xét đến bất biến tương đối, mà tạo thành dạng bất biến cho cả hệ số tỷ lệ.) Các nhà toán học có thể yêu cầu đối với mọi đa thức mà A, B, and C không thay đổi bởi tác dụng của SL2; đây được gọi là bất biến của dạng trùng phương bậc hai, tương ứng với biệt thức của đa thức. Một cách tổng quát hơn, có thể tổng quát đối với dạng bất biến của phương trình đa thức thuần nhất A0xry0 +... + Arx0yr có bậc cao hơn, mà sẽ là đa thức với các hệ số A0,..., Ar, và thậm chí tổng quát hơn, ta có thể đặt câu hỏi tương tự đối với đa thức thuần nhất có nhiều hơn hai biến.

Một trong những mục đích chính của lý thuyết bất biến là giải quyết "vấn đề cơ sở hữu hạn". Tổng hay tích của hai bất biến bất kỳ là không đổi, và vấn đề cơ sở hữu hạn đòi hỏi liệu có thể thu được mọi bất biến chỉ từ một số hữu hạn các bất biến, gọi là các phần tử sinh, và sau đó thực hiện cộng hoặc nhân các phần tử sinh với nhau. Ví dụ, biệt thức cho một cơ sở hữu hạn (với một phần tử) cho các bất biến của dạng trùng phương bậc hai. Thầy hướng dẫn của Noether, Paul Gordan, được coi là "ông hoàng của lý thuyết bất biến", và đóng góp chính của ông đối với toán học là lời giải đưa ra vào năm 1870 về vấn đề cơ sở hữu hạn cho các bất biến của những đa thức thuần nhất hai biến.[93][94] Ông chứng minh vấn đề này bằng phương pháp xây dựng để tìm mọi bất biến và các phần tử sinh của chúng, nhưng đã không thể áp dụng phương pháp này cho các bất biến của đa thức với ba hay nhiều biến hơn. Năm 1890, David Hilbert chứng minh mệnh đề tương tự cho bất biến của đa thức thuần nhất có số biến bất kỳ.[95][96] Hơn thế nữa, phương pháp của ông áp dụng không những cho nhóm tuyến tính đặc biệt, mà còn đối với các nhóm con của nó như nhóm trực giao đặc biệt.[97] Trong chứng minh đầu tiên của ông gây ra một số tranh cãi bởi vì nó không đưa ra phương pháp xây dựng cho các phần tử sinh, tuy vậy điều này đã được ông nêu ra sau đó. Đối với luận án của bà, Noether mở rộng phép chứng minh tính toán của Gordan đối với các đa thức thuần nhất có ba biến. Cách xây dựng của Noether đưa ra khả năng nghiên cứu mối liên hệ giữa các bất biến. Sau này, sau khi bà chuyển sang các phương pháp trừu tượng, Noether nhớ lại luận án của mình như là Mist (mớ hỗn độn) và Formelngestrüpp (một rừng các phương trình).

Lý thuyết Galois

Lý thuyết Galois đề cập tới các phép biến đổi của trường số làm hoán vị nghiệm của phương trình. Xét phương trình đa thức một biến x có bậc n, mà các hệ số của nó thuộc về tập hợp các trường nền, mà có thể là, ví dụ, trường các số thực, số hữu tỉ, hoặc số nguyên đồng dư 7. Có thể tồn tại hoặc không tồn tại x làm cho đa thức có giá trị bằng 0. Những lựa chọn này nếu tồn tại, được gọi là nghiệm của đa thức. Nếu đa thức là x2 + 1 và trường nền là số thực, thì đa thức vô nghiệm, bởi vì với bất kỳ x nào thì giá trị của đa thức luôn lớn hơn hoặc bằng 1. Nếu trường nền là mở rộng, thì đa thức có thể có nghiệm, và nếu sự mở rộng này là đủ, thì số nghiệm của đa thức luôn luôn bằng số bậc của nó. Tiếp tục ví dụ ở trước, nếu trường được mở rộng tới trường số phức, thì đa thức có hai nghiệm i và −i, với i là đơn vị ảo, tức là i 2 = −1. Tổng quát hơn, trường mở rộng cho phép đa thức có thể phân tích thành các nghiệm của nó gọi là trường tách của đa thức.

Nhóm Galois của đa thức là tập hợp mọi cách biến đổi trường tách, trong khi vẫn bảo tồn trường nền và nghiệm của đa thức. (Trong ngôn ngữ toán học, những phép biến đổi này được gọi là phép tự đẳng cấu.) Nhóm Galois của x2 + 1 chứa hai phần tử: Phép biến đổi đồng nhất, mà biến mỗi số phức thành chính nó, và liên hợp phức, biến i thành −i. Do nhóm Galois không làm thay đổi trường nền, nó cũng không làm thay đổi các hệ số của đa thức, do vậy mọi nghiệm của đa thức cũng không bị thay đổi. Mỗi nghiệm có thể chuyển tới nghiệm kia, do vậy phép biến đổi chỉ làm hoán vị n nghiệm giữa chúng. Sự quan trọng của nhóm Galois rút ra từ định lý cơ bản của lý thuyết Galois, với kết quả là các trường nằm giữa trường nền và trường tách là tương ứng một một với các nhóm con của nhóm Galois.

Năm 1918, Noether công bố bài báo cột mốc về bài toán Galois nghịch đảo.[98] Thay vì xác định nhóm Galois của các phép biến đổi đối với một trường và mở rộng của nó, Noether đặt ra câu hỏi liệu khi cho một trường và một nhóm, có thể luôn luôn tìm được một mở rộng trường mà sinh ra nhóm như nhóm Galois của nó. Bà thu hẹp vấn đề này thành "bài toán Noether", với câu hỏi liệu trường cố định của một nhóm con G của nhóm hoán vị Sn tác dụng lên trường k(x1,..., xn) luôn luôn là mở rộng siêu việt thuần túy của trường k. (Lần đầu tiên bà đề cập đến vấn đề này trong bài báo năm 1913,[99] trong đó bà quy vấn đề cho đồng nghiệp Fischer.) Bà chứng tỏ bài toán này đúng với n = 2, 3, hay 4. Năm 1969, R. G. Swan tìm thấy một phản ví dụ đối với bài toán Noether, với n = 47 và G là nhóm xiclic có bậc 47[100] (mặc dù nhóm này có thể coi như nhóm Galois của số hữu tỉ theo cách đánh giá khác). Bài toán Galois nghịch đảo vẫn chưa được giải quyết triệt để cho tới nay.[101]

Vật lý học

Noether chuyển đến Göttingen vào năm 1915 theo lời mời của David Hilbert và Felix Klein, khi họ muốn năng lực liên quan đến lý thuyết bất biến của bà giúp họ hiểu được thuyết tương đối tổng quát, lý thuyết hình học về lực hấp dẫn phát triển chủ yếu bởi Albert Einstein. Hilbert nhận thấy định luật bảo toàn năng lượng dường như bị vi phạm trong thuyết tương đối rộng, do thực tế là năng lượng hấp dẫn tự nó cũng đóng góp vào nguồn của trường hấp dẫn. Noether đã đưa ra biện pháp giải quyết cho nghịch lý này, và nó trở thành một công cụ cơ bản cho vật lý lý thuyết hiện đại, với định lý Noether thứ nhất, mà bà chứng minh vào năm 1915 nhưng không công bố cho tới tận năm 1918.[102] Bà không những giải quyết vấn đề này trong thuyết tương đối tổng quát, mà còn xác định ra những đại lượng bảo toàn cho mọi hệ tuân theo các định luật vật lý mà tương ứng với các đối xứng liên tục.

Khi tiếp nhận công trình của bà, Einstein viết cho Hilbert: "Hôm qua tôi nhận được từ cô Noether một bài báo rất tuyệt về bất biến. Tôi bị ấn tượng rằng những thứ này có thể được hiểu theo cách tổng quát như thế. Người bảo vệ già ở Göttingen nên được học một số bài học từ cô Noether! Cô dường như biết được bí quyết của mình."[103]

Để minh họa, nếu một hệ vật lý hành xử giống nhau bất kể nó hướng như thế nào trong không gian, thì định luật vật lý mà chi phối nó là dạng đối xứng quay; từ đối xứng này, định lý chỉ ra rằng mô men động lượng của hệ phải được bảo toàn.[104] Hệ vật lý tự nó không cần thiết phải có dạng đối xứng; ví như một tiểu hành tinh hình dạng bất thường trôi nổi trong vũ trụ vẫn tuân theo định luật bảo toàn mô men động lượng mặc dù hình dáng không đối xứng của nó. Hơn thế, sự đối xứng của các định luật vật lý chi phối hệ là lý do chịu trách nhiệm cho các định luật bảo toàn. Một ví dụ khác, nếu một thí nghiệm vật lý có cùng kết quả ở bất kỳ vị trí nào trong không gian và thời gian, thì định luật chi phối thí nghiệm là đối xứng với các phép tịnh tiến liên tục trong không gian và thời gian; và theo định lý Noether, những đối xứng này lần lượt tương ứng với các định luật bảo toàn động lượng và bảo toàn năng lượng cho thí nghiệm.

Định lý Noether đã trở thành một công cụ cơ bản của vật lý lý thuyết hiện đại, bởi nó không những liên hệ các đối xứng liên tục với các định luật bảo toàn mà còn trở thành một công cụ tính toán trong thực hành.[4] Định lý của bà cho phép các nhà nghiên cứu xác định các đại lượng bảo toàn từ những đối xứng quan sát thấy của hệ vật lý. Ngược lại, nó cho phép miêu tả một hệ vật lý dựa trên hiểu biết về những định luật bảo toàn. Ví dụ, giả sử một hiện tượng vật lý mới được khám phá. Lúc này định lý Noether cung cấp phép thử cho mô hình lý thuyết nhằm giải thích cho hiện tượng này: nếu lý thuyết có một đối xứng liên tục thì định lý Noether đảm bảo rằng trong lý thuyết phải có một đại lượng bảo toàn, và nếu lý thuyết là đúng thì sự bảo toàn nà phải quan sát thấy được trong thí nghiệm hoặc trong hiện tượng đó.

Kỷ nguyên thứ hai (1920–26)

Mặc dù các kết quả trong kỷ nguyên thứ nhất của Noether là ấn tượng và có ích, sự nổi tiếng của bà với vai trò là nhà toán học nằm chủ yếu ở những công trình đột phá trong kỷ nguyên thứ hai và thứ ba, như Hermann Weyl và B. L. van der Waerden nêu trong điếu văn của họ về bà.

Trong hai kỷ nguyên này, bà không chỉ áp dụng các ý tưởng và phương pháp của những nhà toán học tiền bối; hơn thế bà đã tạo ra những hệ thống mới các định nghĩa toán học mà các nhà toán học tương lai sẽ sử dụng. Đặc biệt, bà phát triển một lý thuyết hoàn toàn mới về các i đê an trong lý thuyết vành mà tổng quát hóa công trình trước đó của Richard Dedekind. Bà cũng nổi tiếng với việc phát triển điều kiện dây chuyền tăng (ascending chain conditions), một điều kiện đơn giản không hữu hạn mà thu được những kết quả mạnh trong công trình của bà. Những điều kiện này và lý thuyết i đê an cho phép Noether có thể tổng quát hóa nhiều kết quả cũ trước đây và giải quyết các bài toán còn tồn tại theo một khuôn khổ mới, chẳng hạn như các vấn đề của lý thuyết loại trừ (elimination theory) và các đa tạp đại số (algebraic variety) mà cha bà đã nghiên cứu trước đó.

Điều kiện dây chuyền tăng và giảm

Trong kỷ nguyên này, Noether trở lên nổi tiếng với điều kiện dây chuyền tăng (Teilerkettensatz) hoặc giảm (Vielfachenkettensatz). Một dãy các tập hợp con không rỗng A1, A2, A3, v.v. của một tập hợp S được nói là tăng dần, nếu mỗi tập là tập con của tập hợp tiếp theo

A 1 ⊂ A 2 ⊂ A 3 ⊂ ⋯ . {\displaystyle A_{1}\subset A_{2}\subset A_{3}\subset \cdots .}

Ngược lại, một dãy các tập hợp con của S được gọi là giảm dần nếu mỗi tập con chứa tập hợp tiếp theo:

A 1 ⊃ A 2 ⊃ A 3 ⊃ ⋯ . {\displaystyle A_{1}\supset A_{2}\supset A_{3}\supset \cdots .}

Một dây chuyềntrở thành không đổi sau một số hữu hạn các bước nếu tồn tại n sao cho A n = A m {\displaystyle A_{n}=A_{m}} đối với mọi m ≥ n. Tập hợp chứa các tập con của một tập hợp cho trước thỏa mãn điều kiện dây chuyền tăng nếu bất kỳ dãy tăng nào trở thành không đổi (hằng số) sau một số hữu hạn các bước. Nó thỏa mãn điều kiện dây chuyền giảm nếu bất kỳ dãy giảm nào trở thành không đổi sau một số hữu hạn các bước.

Các điều kiện dây chuyền tăng và giảm là rất tổng quát, chúng có thể áp dụng nhiều kiểu đối tượng toán học—và nhìn bề ngoài chúng có vẻ như không phải là công cụ mạnh cho lắm. Noether chỉ ra bằng cách nào có thể sử dụng những điều kiện này để tận dụng tối đa ưu điểm của chúng: ví dụ, làm cách nào để sử dụng chúng để chứng minh rằng mỗi tập hợp của những đối tượng con có một phần tử cực đại/cực tiểu hoặc một đối tượng phức có thể sinh ra từ một số các phần tử nhỏ hơn. Những kết luận này thường là bước quan trọng trong phép chứng minh.

Nhiều đối tượng trong đại số trừu tượng thỏa mãn hai điều kiện dây chuyền, và nếu chúng thỏa mãn điều kiện dây chuyền tăng, chúng được gọi là Noetherian để vinh danh bà. Bằng định nghĩa, vành Noetherian thỏa mãn điều kiện dây chuyền tăng trên các i đê an trái và phải của nó, trong khi nhóm Noetherian được định nghĩa là một nhóm mà mọi điều kiện tăng giới hạn của các nhóm con là hữu hạn. Mô đun Noetherian là mô đun trong đó mọi điều kiện tăng giới hạn của các mô đun con kết thúc sau một số hữu hạn bước. Không gian Noetherian là không gian tô pô trong đó mọi điều kiện tăng giới hạn của các không gian con mở kết thúc sau một số hữu hạn các số hạng, định nghĩa này được sử dụng để cho phổ của một vành Noetherian là không gian tô pô Noetherian.

Điều kiện dây chuyền thường được thừa hưởng bởi các đối tượng con. Ví dụ, mọi không gian con của một không gian Noetherian tự chúng là các Noetherian; mọi nhóm con và nhóm thương của một nhóm Noetherian là Noetherian; và, mutatis mutandis, điều tương tự co các mô đun con và mô đun thương của một mô đun Noetherian. Mọi vành thương của một vành Noetherian là Noetherian, nhưng điều đó không nhất thiết phải thỏa mãn đối với các vành con của nó. Điều kiện dây chuyền cũng có thể được thừa hưởng từ những tổ hợp hoặc mở rộng của một đối tượng Noetherian. Ví dụ, tổng trực tiếp hữu hạn của các vành Noetherian là Noetherian, như vành của các chuỗi lũy thừa trên một vành Noetherian.

Ứng dụng khác của các điều kiện dây chuyền là trong phép quy nạp Noetherian, một sự tổng quát hóa của phép quy nạp toán học. Các nhà đại số thường sử dụng nó để giản lược những phát biểu tổng quát về tập hợp các đối tượng thành phát biểu cho những đối tượng cụ thể trong tập hợp đó. Giả sử rằng S là tập sắp thứ tự bộ phận (partially ordered set). Một cách để chứng minh phát biểu về các đối tượng trong S là giả sử sự tồn tại của một phản ví dụ và suy luận ra sự mâu thuẫn, do vậy chứng minh được phát biểu ban đầu. Giả thuyết cơ bản của phép đệ quy Noetherian là mỗi tập con không rỗng của S chứa một phần tử cực tiểu. Đặc biệt, tập hợp mọi phản ví dụ chứa một phần tử cực tiểu, phần tử phản ví dụ cực tiểu. Để có thể chứng minh phát biểu ban đầu, do đó, chỉ cần chứng minh vừa đủ một số thứ mà dường như yếu hơn: Đối với bất kỳ phản ví dụ nào, tồn tại một phản ví dụ nhỏ hơn.

Vành giao hoán, iđêan, và mô đun

Bài báo của Noether, Idealtheorie in Ringbereichen (Lý thuyết i đê an trong miền vành, 1921),[105] là cơ sở cho lý thuyết vành giao hoán tổng quát, và là một trong những định nghĩa tổng quát đầu tiên của vành giao hoán.[106] Trước bài báo này, đa số kết quả trong đại số giao hoán bị giới hạn trong những ví dụ đặc biệt của vành giao hoán, như vành đa thức trên trường hoặc vành của số nguyên đại số. Noether chứng tỏ rằng trong một vành mà thỏa mãn điều kiện dây chuyền tăng trên các i đê an, mỗi i đê an được sản sinh một cách hữu hạn. Năm 1943, nhà toán học Pháp Claude Chevalley đưa ra thuật ngữ, vành Noether để miêu tả tính chất này.[106] Một kết quả lớn trong bài báo năm 1921 của Noether là định lý Lasker–Noether, nó mở rộng định lý Lasker về phân hoạch cơ bản của i đê an của vành đa thức cho mọi vành Noether. Định lý Lasker–Noether có thể coi như là sự tổng quát hóa của định lý cơ bản của số học mà nói rằng bất kỳ số nguyên dương nào có thể biểu diễn thành tích của các số nguyên tố, và sự phân tích này là duy nhất.

Công trình của Noether Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern (Cấu trúc trừu tượng của lý thuyết i đê an trong lĩnh vực số đại số và trường hàm, 1927)[107] đặc trưng hóa vành mà trong nó các i đê an có thể phân tích duy nhất thành các i đê an nguyên tố như miền Dedekind: miền tích phân là Noetherian, 0 hoặc 1-chiều, và tích phân đóng trong trường thương của chúng. Bài báo này cũng chứa cái mà bây giờ gọi là định lý đẳng cấu, miêu tả một số đẳng cấu tự nhiên cơ bản, và một số kết quả cơ bản khác trên mô đun Noetherian và mô đun Artinian.

Lý thuyết loại trừ

Năm 1923–24, Noether áp dụng lý thyết vành của bà cho lý thuyết loại trừ—trong khi bà hướng dẫn cho sinh viên Kurt Hentzelt—chứng tỏ rằng các định lý cơ bản về nhân tử hóa đa thức có thể thực hiện một cách trực tiếp.[108][109][110] Thông thường, lý thuyết loại trừ được xem xét với sự loại trừ một hoặc nhiều biến từ một hệ phương trình đa thức, thường theo phương pháp của kết thức. Để minh họa, hệ phương trình thường có thể viết thành dạng của ma trận M (thiếu biến x) nhân với vectơ v (chỉ có lũy thừa khác của x) bằng vectơ không, M•v = 0. Từ đây, định thức của ma trận M phải bằng 0, chứng tỏ một phương trình mới trong đó biến x đã bị loại trừ.

Lý thuyết bất biến của nhóm hữu hạn

Các kỹ thuật như trong bài báo gốc của Hilbert về lời giải không chứa cách xây dựng cho bài toán cơ sở hữu hạn không thể sử dụng để nhận được thông tin định lượng về các bất biến của một tác dụng nhóm, và hơn nữa, chúng không áp dụng được cho mọi phép tác dụng nhóm. Trong bài báo năm 1915,[111] Noether tìm ra một lời giải cho bài toán cơ sở hữu hạn cho một phép biến đổi nhóm hữu hạn G tác dụng lên một không gian vec tơ hữu hạn chiều trên một trường có đặc trưng 0. Giải pháp của bà cho thấy vành các bất biến được sinh ra từ các bất biến thuần nhất mà bậc của chúng nhỏ hơn hoặc bằng bậc của nhóm hữu hạn; hay gọi là giá trị biên Noether. Bài báo của bà đưa ra hai cách chứng minh cho giá trị biên Noether, cả hai đều có hiệu lực khi đặc trưng của trường là nguyên tố cùng nhau với |G|!, giai thừa của bậc |G| của nhóm G. Số lượng các phần tử sinh không nhất thiết phải thỏa mãn giá trị biên Noether khi đặc trưng của trường chia cho |G|,[112] nhưng Noether đã không thể xác định liệ giá trị biên có đúng khi đặc trưng của trường chia cho |G|! chứ không phải |G|. Trong nhiều năm, việc xác định sự đúng đắn hay bác bỏ giá trị biên trong trường hợp này là một vấn đề mở mà các nhà toán học gọi là "khoảng trống Noether". Cuối cùng vấn đề này đã được giải quyết một cách độc lập bởi Fleischmann vào năm 2000 và Fogarty vào năm 2001, khi cả hai chứng tỏ rằng giá trị biên vẫn còn đúng.[113][114]

Trong bài báo năm 1926,[115] Noether mở rộng định lý Hilbert cho biểu diễn một nhóm hữu hạn trên trường bất kỳ; một trường hợp mới mà không tuân theo công trình của Hilbert khi đặc trưng của trường chia cho bậc của nhóm. Kết quả của Noether sau này được William Haboush mở rộng cho mọi nhóm giản lược trong chứng minh phỏng đoán Mumford của ông.[116] Trong bài báo này Noether cũng giới thiệu ra bổ đề chuẩn hóa Noether, mà chứng minh rằng miền tích phân sinh hữu hạn A trên trường k có một tập hợp chứa x1,..., xn các phần tử độc lập đại số sao cho A lấy tích phân trên k[x1,..., xn].

Đóng góp cho tô pô học

Phép biến dạng hình liên tục (đồng luân) biến cốc cà phê thành hình xuyến và ngược trở lại.

Như nêu bởi Pavel AlexandrovHermann Weyl trong bài viết tưởng niệm của họ, đóng góp của Noether đối với ngành tô pô học thể hiện những ý tưởng phong phú và bằng cách nào mà tầm nhìn của bà đã làm biến đổi toàn bộ một lĩnh vực toán học. Trong tô pô, các nhà toán học nghiên cứu các tính chất của đối tượng mà vẫn bất biến ngay cả khi nó bị biến dạng, những tính chất như là tính không liên thông. Một câu nói đùa hay gặp khi nói về các nhà tô pô học là họ không thể phân biệt được một hình xuyến và một tách cà phê, do chúng có thể bị biến dạng liên tục để trở thành vật thể kia.

Tên tuổi của Noether gắn liền với những ý tưởng cơ bản dẫn tới sự phát triển của tô pô đại số từ lĩnh vực xuất hiện trước đó là tô pô tổ hợp, đặc biệt là ý tưởng về nhóm đồng điều.[117] Theo bài viết của Alexandrov, Noether đã tham dự buổi giảng của Heinz Hopf và ông trong mùa hè năm 1926 và 1927, nơi "bà tiếp tục có những phát hiện về các vấn đề rất sâu sắc và tinh tế "[118] và ông viết tiếp rằng,

Khi... bà đầu tiên trở lên quen với cách xây dựng có hệ thống của tô pô tổ hợp, bà ngay lập tức quan sát thấy sẽ rất có ích khi nghiên cứu trực tiếp nhóm các phức đại số và chu trình của một đa diện cho trước và Nhóm con của chu trình nhóm chứa chu trình thuần nhất tới 0; thay vì định nghĩa trước đó bằng Số Betti, bà ngay lập tức đề xuất định nghĩa nhóm Betti như là nhóm (thương) bổ trợ của nhóm của mọi chu trình bằng nhóm con của chu trình thuần nhất tới 0. Sự quan sát này hiện nay dường như là đúng. Nhưng trong các năm (1925–28) điều này hoàn toàn là một quan niệm mới mẻ.[119]

Đề xuất của Noether rằng có thể nghiên cứu tô pô theo phương pháp của đại số đã ngay lập tức được Hopf, Alexandrov, và những người ủng hộ,[120] và nó trở thành chủ đề thảo luận thường xuyên giữa các nhà toán học ở Đại học Göttingen.[121] Noether nhận thấy ý tưởng của bà về nhóm Betti làm cho công thức Euler–Poincaré có thể hiểu một cách dễ hơn, và chính công trình của Hopf về chủ đề này [122] "mang những dấu ấn nổi bật của Emmy Noether".[123] Noether chỉ đề cập những ý tưởng về tô pô xuất phát từ chính bà trong một chuyện bên lề của một bài báo năm 1926,[124] khi bà trích dẫn tới nó như là một ứng dụng của lý thuyết nhóm.[125]

Cách tiếp cận đại số để nghiên cứu tô pô cũng đã được phát triển một cách độc lập ở Áo. Trong khóa học năm 1926–27 tại Vienna, Leopold Vietoris nêu ra định nghĩa nhóm đồng điều, sau đó được Walther Mayer phát triển thành định nghĩa kiểu tiên đề hóa vào năm 1928.[126]

Helmut Hasse nghiên cứu cùng với Noether và những người khác thành lập lên lý thuyết các đại số đơn giản trung tâm.

Kỷ nguyên thứ ba (1927–35)

Số siêu phức và lý thuyết biểu diễn

Nhiều công trình về số siêu phứcbiểu diễn nhóm được thực hiện trong thế kỷ 19 và đầu thế kỷ 20, nhưng vẫn còn tản mát. Noether thống nhất các kết quả và đưa ra lý thuyết biểu diễn tổng quát đầu tiên cho nhóm và các đại số.[127] Trong thời gian ngắn, Noether tổng kết cấu trúc lý thuyết đại số kết hợp và lý thuyết biểu diễn nhóm thành lý thuyết số học duy nhất về các mô đun và i đê an trong vành thỏa mãn điều kiện dây chuyền tăng. Công trình này của Noether có ý nghĩa quan trọng cơ bản cho sự phát triển của đại số hiện đại.[128]

Đại số không giao hoán

Noether cũng có đóng góp vào một số sự phát triển khác của lĩnh vực đại số. Cùng với Emil Artin, Richard Brauer, và Helmut Hasse, bà lập lên cơ sở của lý thuyết các đại số đơn giản trung tâm.[129]

Noether, Helmut Hasse, và Richard Brauer cùng nhau viết một bài báo kinh điển về đại số phép chia (division algebra),[130] là cơ sở cho những hệ thống đại số nào mà có thể tồn tại phép chia. Họ chứng minh hai định lý quan trọng: định lý cục bộ-toàn cục nói rằng nếu một đại số phép chia trung tâm với số chiều hữu hạn trên một trường số tách một cách cục bộ khắp nơi khi nó tách một cách toàn cục (tức là tầm thường), và từ điều này họ suy ra Hauptsatz ("định lý chính"): mỗi đại số chia trung tâm hữu hạn chiều trên một trường số đại số F là tách trên một mở rộng xiclic cyclotomic. Những định lý này cho phép các nhà toán học phân loại mọi đại số chia trung tâm hữu hạn chiều trên một trường số. Hệ quả của bài báo Noether đó là nó chính là trường hợp đặc biệt của một định lý tổng quát hơn, mọi trường con tối đại của một đại số chia D là trường tách.[131] Bài báo này cũng chứa định lý Skolem–Noether nói rằng hai nhúng mở rộng của một trường k vào một đại số đơn trung tâm hữu hạn chiều trên k là liên hợp với nhau. Định lý Brauer–Noether[132] cho một đặc trưng hóa của trường tách của một đại số chia trung tâm trên một trường.

Tài liệu tham khảo

WikiPedia: Emmy_Noether //nla.gov.au/anbd.aut-an35389275 http://www.britannica.com/EBchecked/topic/417132 http://select.nytimes.com/gst/abstract.html?res=F7... http://www.nytimes.com/2012/03/27/science/emmy-noe... http://ransomstephens.com/the-god-patent.htm http://link.springer.com/article/10.1007%2FBF01455... http://link.springer.com/article/10.1007%2FBF01456... http://aleph.nkp.cz/F/?func=find-c&local_base=aut&... http://dfg.de/en/research_funding/programmes/indiv... http://www.digizeitschriften.de/dms/img/?PPN=PPN23...